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Abstract The geometry and kinematics of one-parameter dual spherical motions is presented using
Study’s dual-line coordinates. The relations between invariants of the axodes are expressed in simple form
with geometrical reasoning and explanation. In terms of this, the dual version of associated space curves
is demonstrated for a ruled surface to be associated with the axodes of the motion. The relative motion
between the axodes is used for deriving the geometry and kinematics of the paths instantaneously traced in
the fixed space by a line associated with the moving axode. Especially, the distribution parameter and the
inflection-line congruence are investigated. Furthermore, a new metric is developed and used to investigate
the geometrical properties and kinematics of line trajectory as well as Disteli axis. Finally, as an application
an example is put forward and explained in detail.

Keywords Disteli’s formula · E. Study’s map · Line congruence · Ruled surface

1 Introduction

Line trajectories are important in kinematic design because they can be identified with lines of kinematic
elements of a particular mechanism. In spatial motion, the trajectories of oriented lines embedded in a
moving rigid body are generally ruled surfaces. In kinematics, we are interested in studying the intrinsic
properties of line trajectories from the concepts of a ruled surface in differential geometry. Thus, the
differential geometry of a ruled surface is important in the study of rational design problems in spatial
mechanisms. An important analytical tool in the study of line trajectories is the introduction of dual
numbers which were first introduced by Clifford [1] and rediscovered by Study [2]. A comprehensive
analysis of dual numbers and their applications to the kinematic analysis of spatial linkages was conducted
by Yang [3]. Bottema and Roth [4] include a treatment of theoretical kinematics using dual numbers. Dual
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numbers are extremely useful for spatial mechanisms, since there is a vast literatures on this branch of
classical differential line geometry and spatial mechanisms; for more details see [3–17]

In spatial kinematics, the geometry of infinitesimally separated positions of a system of rigid bodies is
a difficult but important and interesting subject that has been widely studied during the past decades. It
may lead to very complex computations in the most compact form and searches for their most rational
organization. This target motivates a great deal of research on the fundamental operations and the algebraic
structures lying behind kinematics methods. There exists a vast literature on the subject including several
monographs, for example [18–23].

It is well known in spatial kinematics that the instantaneous screw axis (ISA) at a prescribed instant
can be determined by the first-order derivatives of a conjugate motion of one degree of freedom, i.e., the
translational velocity and the angular velocity at an assigned point of a moving body (see, for example,
[4]). It is also well known that the aggregation of the ISAs of all instants from a pair of ruled surfaces,
called the moving and fixed axodes, with ISA as their generating line in the moving space and in the fixed
space, respectively. Since the fixed and moving centroids from a logical starting point on which to build a
geometric theory of the instantaneous planar kinematics of a moving body, as pointed out by Hunt [24],
we may also expect the axodes to occupy a similar important fundamental place in the spatial kinematic
geometry of a rigid body. These are expressible in terms comparable to those of the plane, but they have
not appeared so far.

The motion of one member of a mechanism of rigid members, be it produced by cams, gears, or linkages,
is best expressed relative to some second member. In the resulting two-body problem it is convenient
to fix the latter and to describe the motion relative to a fixed frame of reference fixed in it. This paper
provides a new geometric and kinematic approach to one-parameter spatial motion for the calculation
of instantanous invariants based on information specifying the motion of the axodes. In terms of this,
for one-parameter spatial motions the integral invariants of a ruled surface, generated by a fixed line
in the moving space, are related to the instantaneous invariants of the motion. This novel approach is
used to reformulate the geometrical properties of line trajectories. Then the distribution parameter and
the inflection-line congruence are examined in detail, and a new proof of the well-known formulae for
the Disteli axis is given. Further, a new metric is demonstrated and used to investigate the geometrical
properties and the kinematics of line trajectories with the Disteli axis. Finally, a practical example is put
forward and explained.

2 Elements of screw calculus

We start our discussion by reviewing some of the basic concepts of dual numbers. Dual numbers are the
set of all pairs of real numbers written as

A = a + εa∗, a, a∗ ∈ R, (2.1)

where the dual unit ε satisfies the relationships

ε �= 0, ε1 = 1ε, ε2 = 0. (2.2)

The application of line geometry and dual-number representation of line trajectories has been developed
by Blaschke [24] and Bottema and Roth [4]. A more recent description of this representation can be found
in [1,3,20–24]; the dual number is used to recast the point-displacement relationship into relationships of
lines.

As stated, the dual numbers were first introduced by Clifford [1] after which Study [2] used it as a tool
for his research on differential-line geometry. Given the dual numbers A = a + εa∗, and B = b + εb∗, the
rules for combination can be defined as:
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Equality: A = B ⇐⇒ a = b, a∗ = b∗,
Addition: A + B = (a + b)+ ε(a∗ + b∗),
Multiplication: AB = ab + ε(a∗b + ab∗).

⎫
⎬

⎭
(2.3)

The set of dual numbers, denoted as D, forms a commutative group under addition. The associative laws
hold for multiplication and dual numbers are distributive. As a result, the division of dual numbers is
defined as:
A
B

= a
b

+ ε

(
a∗b − ab∗

b2

)

, b �= 0. (2.4)

A dual number is called a pure dual when

A = εa∗. (2.5)

Division by a pure dual number is not defined. An example of a dual number is the dual angle between
two skew lines in space defined as:

� = θ + εθ∗, (2.6)

where θ is the projected angle between the lines and θ∗ is the minimal distance between the lines along
their common perpendicular line.

A differentiable function f (x) can be defined for a dual variable f (x + εx∗) by expanding the function
using a Taylor series:

f (x + εx∗) = f (x)+ εx∗ df (x)
dx

.

Thus, we have the following:

sin−1(θ + εθ∗) = sin−1 θ + ε θ∗√
1−θ2

,

cos−1(θ + εθ∗) = cos−1 θ − ε θ∗√
1−θ2

,

tan−1(θ + εθ∗) = tan−1 θ + εθ∗ sec2 θ .

⎫
⎪⎪⎬

⎪⎪⎭

(2.7)

Other functions may also be defined in this manner. It may also be shown that, for a positive integer n,

An = an + εna∗an−1 = an
(

1 + εn
a∗

a

)

. (2.8)

2.1 Ruled surface with dual representation

An oriented line L in the three-dimensional Euclidean space E3 can be determined by a point p ∈ L and
a normalized direction vector a of L, i.e., ‖a‖ = 1. To obtain components for L, one forms the moment
vector

a∗ = p × a, (2.9)

with respect to the origin point in E3. If p is substituted by any point

q = p+λa; λ ∈ R,

on L, Eq. 2.9 implies that a∗ is independent of p on L. The two vectors a and a∗are not independent of one
another; they satisfy the following relationships:

〈a, a〉 = 1, 〈a∗, a〉 = 0. (2.10)

The six components ai, a∗
i (i = 1, 2, 3) of a, and a∗are called the normalized Plucker coordinates of the line

L. Hence the two vectors a and a∗ determine the oriented line L.
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Conversely, any six-tuple ai, a∗
i (i = 1, 2, 3) with

a2
1 + a2

2 + a2
3 = 1, a1a∗

1 + a2a∗
2 + a3a∗

3 = 0, (2.11)

represent a line in the three-dimensional Euclidean space E3. Thus, the set of all oriented lines in the
three-dimensional Euclidean space E3 is in one-to-one correspondence with pairs of vectors in E3 subject
to the relationships in Eq. 2.11

For vectors (a∗, a) ∈E3 × E3 we define the set

D3 = D × D × D = {A = a+εa∗; ε �= 0, ε1 = 1ε, ε2 = 0}. (2.12)

Then for any vectors A, and B in D3, the scalar product is defined by

〈A, B〉 = 〈a, b〉+ε(〈a∗, a〉 + 〈a, b∗〉), (2.13)

and the norm of A is defined by

‖A‖ = ‖a‖ + ε
〈a∗, a〉
‖a‖ , ‖a‖ �= 0. (2.14)

Hence, we may write the dual vector A as a dual multiplier of a dual vector in the form

A =‖A‖U, (2.15)

where U is referred to as the axis. The ratio

h = 〈a∗, a〉
‖a‖ , (2.16)

is called the pitch along the axis U. If h = 0 and ‖a‖ = 1, A is an oriented line, and when h is finite, A is a
proper screw; and when h is infinite, A is called a couple.

A dual vector with norm equal to unity is called a dual unit vector. From Eq. 2.14 it is easy to show
that a dual unit vector satisfies the relationships in Eq. 2.11. Hence, each oriented line L = (a, a∗) ∈ E3 is
represented by a dual unit vector

A = a+εa∗. (2.17)

The dual unit sphere in D3 is defined as follows:

〈A, A〉 = 〈a, a〉+2ε〈a, a∗〉 = 1. (2.18)

It follows that relations (2.11) and (2.18) are corresponding. Via this we have the following map (Study’s
Map) [25]: the set of all oriented lines in Euclidean space E3 is in one-to-one correspondence with set of
points of a dual unit sphere in D3-space [25].

The dual representation of a line is simply the Plucker vector written as a dual unit vector. This vector is a
point on a unit sphere in D3 which is also the image of the Plucker quadratic in D3. This representation has
all the geometric structure offered by the Plucker coordinates with a simplified computational structure.
This is a result of the Study’s map, the points on the dual unit sphere representing lines in E3. However,
this representation is not unique. Each oriented line is represented by two points on the dual unit sphere.
The antipodal points on the dual unit sphere represent the same line in E3. Lines are points on the dual
unit sphere and curves on it are ruled surfaces. The structure of the dual unit sphere offers some interesting
insight into the geometry of the underlying ruled surface. This can be seen from a study of the properties
of the curves on the dual unit sphere. Therefore, the terms dual curve (dual unit vector depending on a
real parameter) and ruled surface are synonymous in this work.

This dualized form of line representation along with Study’s map leads to a new interpretation of the
scalar and vectorial products of two lines. For two directed lines X and Y the dual angle� = θ+εθ∗combines
the angle θ and the minimal distance θ∗. This gives rise to geometric interpretations of the following products
of the dual unit vectors:

〈X, Y〉 = cos� = cos θ − εθ∗ sin θ . (2.19)
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The following special cases can be given:

1. If 〈X, Y〉 = 0, then θ = π
2 and θ∗ = 0; this means that the two lines X and Y meet at a right angle,

2. If 〈X, Y〉 = pure dual, then θ = π
2 and θ∗ �= 0; the lines X and Y are orthogonal skew lines,

3. If 〈X, Y〉 = pure real, then θ �= π
2 and θ∗ = 0; the lines X and Y intersect,

4. If 〈X, Y〉 = 1, then θ = 0 and θ∗ = 0; the lines X and Y are coincident (their senses are the same or
opposite).

The vectorial product of X and Y is defined by

X × Y = N sin�,

where N represents a direct common perpendicular of the lines X and Y, and the signs of θ and θ∗are
related to the orientation of N. If oriented lines X and Y meet at right angle, then

Z = cos�X+ sin�Y

defines a line which is the image of X under a helical motion about the axis X × Y with dual angle �.
A ruled surface in the 3-dimensional Euclidean space E3 is a one-parameter set of lines. The ruled

surface is described as the line through a curve α = α(u) and in the direction of a = a(u) parametrized by

R : y(u, t) = α(u)+ ta(u), t ∈ R, (2.20)

where α = α(u) is its base curve and a = a(u) is the unit vector along the direction of the generating lines
of the surface, i.e. ‖a‖ = 1. According to Study’s map, Eq. (2.20) can be rewritten as:

A(u) = a(u)+ εa∗(u) = a(u)+ εα(u)× a(u).

Since the spherical image a(u) is a unit vector, the dual vector A(u) also has unit magnitude as is seen from
the computations:

〈A, A〉 = 〈a + εα × a, a + εα × a〉
= 〈a, a〉+2ε〈a, α × a〉+ε2〈α × a, α × a〉 = 〈a, a〉 =1. (2.21)

As a direct consequence of this representation, we can derive the properties of the one-parameter spatial
motion of a line. Because this representation allows the geometry of ruled surfaces to be represented by
the geometry of the one-parameter motion of a point on the dual unit sphere. A differentiable curve A(u)
on a dual unit sphere in D3, depending on a real parameter u represents a differentiable family of straight
lines in Euclidean 3-space E3 which we call a ruled surface. The lines A are the generators of the surface.

3 A new approach to a curve associated with a dual curve

The approach to a curve associated with a curve is presented in Euclidean 3-dimensional space E3 [26].
We now develop this approach in the dual 3-space D3 to a dual curve associated with a dual curve (ruled
surface associated with a ruled surface) for meeting the requirement of instantaneous kinematic geometry
of spatial motion because the movement of any line in a moving body is associated with the generator of
the axode.

3.1 The Blaschke frame

Let A1 = A(u) be a dual curve on dual unit sphere 〈A, A〉 = 1 in the dual 3-space D3; as usual the Blaschke
frame relative to A1 will be defined as the frame of which this line and the central normal A2 to the ruled
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surface at the central point of A1 are two edges. The third edge A3 is orthogonal to A1 and A2. Blaschke
has shown that [24]:

d
du

⎛

⎝
A1
A2
A3

⎞

⎠ =
⎛

⎝
0 P 0
−P 0 Q
0 −Q 0

⎞

⎠

⎛

⎝
A1
A2
A3

⎞

⎠ , (3.1)

where

P = p + εp∗ = ∥
∥A

′
1

∥
∥, Q = q + εq∗ = det(A1, A

′
1, A

′′
1)

∥
∥A′

1

∥
∥2 (3.2)

are called the Blaschke invariants of the dual curve A(u). Since P contains only first derivatives of the
dual curve A(u), it is a first-order property of the curve; in particular, it is its dual speed. Similarly, Q is a
second-order property of the dual curve A(u). Here the derivative with respect to u is denoted by a dash
over a function symbol.

Consider the properties of two infinitesimally spaced generators, A(u) and A(u+�u). The two generators
are separated by a dual angle given by

dS = ds + εds∗ = ∥
∥A

′
1

∥
∥dt = Pdu, (3.3)

where ds is the angle between the generators and ds∗ is the minimal distance. We can define the distribution
parameter as:

λa = ds∗

ds
= lim

�s∗

�s
= p∗

p
. (3.4)

From Eq. 3.4, it is obvious that, if the generators are parallel, the distribution parameter is infinite. In this
case, the surface is a cylinder and the term dS is a pure dual number.

3.2 The Frenet frame

By means of Eq. 3.3, we have
∥
∥
∥
∥

dA1

dS

∥
∥
∥
∥ = 1. (3.5)

Hence we may say that A = A1(S) is a dual unit-speed curve. Let us denote T(S) = dA1/dS and call T(S)

a unit tangent vector of A(S) at S. We define the dual curvature of A = A1(S) by K = � + ε�∗ = ∥
∥d2

A1
dS2

∥
∥.

If K �= 0, the unit principal normal N(S) of the curve A = A1(S) at S is given by d2A1/dS2 = KN. The
unit vector B = T × N is called a unit binormal vector of the curve A = A1(S) at S. The following Frenet
formula now holds:

d
dS

⎛

⎝
T
N
B

⎞

⎠ =
⎛

⎝
0 K 0
−K 0 T
0 −T 0

⎞

⎠

⎛

⎝
T
N
B

⎞

⎠ , (3.6)

where T(S) = τ(S)+ ετ ∗(S) is the dual torsion of the curve A = A1(S) at S.
The Blaschke and Frenet frames have one common axis T, so that a single dual angle 
 = ψ + εψ∗

specifies completely their relative position. By definition,
 is measured in the negative sense of T, so that:
⎛

⎝
A1
A2
A3

⎞

⎠ =
⎛

⎝
0 − sin
 cos

1 0 0
0 cos
 sin


⎞

⎠

⎛

⎝
T
N
B

⎞

⎠ . (3.7)
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3.3 A curve associated with a dual curve

During the motion of the Blaschke frame along A(u) there is a dual unit vector X that generates a dual
curve X (u) different from A(u). Meanwhile, let the vector equation of X be given by

X = X1A1 + X2A2 + X3A3, (3.8)

where Xi = xi + εx∗
i (i = 1, 2, 3) are the dual coordinates of the dual point X. Based on Eq. 3.1, the first

derivative of X is given by

X′ = (X ′
1 − PX2)A1 + (X ′

2 + PX1 − QX3)A2 + (X ′
3 + QX2)A3. (3.9)

By differentiating the above equation with respect to the motion parameter u, any further order of
derivative of X will be obtained and the invariants of the dual curve X can be represented by the invariants
of the dual curve A1 (u), which will be discussed later.

In particular, if the dual point X is fixed with respect to a fixed dual unit sphere in the dual 3-space D3,
we have X′ = 0, which implies

X ′
1 − PX2 = 0, X ′

2 − PX1 + QX3 = 0, X ′
3 + QX2 = 0. (3.10)

In that case, the dual point X is called a fixed point and Eq. 3.10 is defined as a fixed-point condition of a
dual curve associated with a dual curve.

4 The basic equations of one-parameter dual spherical motion

Consider two dual unit spheres Km and Kf . Let O be the common center and two orthonormal dual
coordinates frames {O; L1, L2, L3} and {O; F1, F2, F3} be rigidly linked to the dual unit spheres Km and Kf ,
respectively. We suppose that {O; F1, F2, F3} is fixed, whereas the elements of the set {O; L1, L2, L3} are
functions of a real parameter t (the time). Then we say that the dual unit sphere Km moves with respect
to the fixed dual unit sphere Kf . We may interpret this as follows: the dual unit sphere Km is rigidly
connected with {O; L1, L2, L3} and moves over the dual unit sphere Kf which is rigidly connected with
{O; F1, F2, F3}. This motion is called a one-parameter dual spherical motion and will be denoted by Km/Kf .
When the center of the dual unit sphere must remain fixed, the transformation groups in D3, the image of
the Euclidean motions, does not contain any translations. If the dual unit spheres Km and Kf correspond
to the line space Hm and Hf , respectively, then Km/Kf corresponds to the one-parameter spatial motion
Hm/Hf . Then Hm is the moving space with respect to the fixed space Hf .

Theorem 4.1 The Euclidean motions in E3 are represented in D3 (the dual space) by dual orthogonal 3 × 3
matrices A = (Aij) where AAt = I, Aij are dual numbers, and I is the 3 × 3 unit matrix.

According to Theorem (4.1) the 3×3 dual matrix A(t)of the motion Km/Kf represents the one-parameter
spatial motion Hm/Hf with the same parameter t ∈ R.

The Lie algebra L(OD3) of the group GL of 3 × 3 positive orthogonal dual matrices A is the algebra of
skew-symmetric 3 × 3 dual matrices

�(t) = A′At =
⎛

⎝
0 �3 −�2
−�3 0 �1
�2 −�1 0

⎞

⎠ , (4.1)

where A′ indicates the differentiation of A with respect to the real parameter t.
During the motion Km/Kf the differential velocity vector of a fixed dual point X on Km, analogous to

the real spherical motion [4], is:

dX
dt

= � × X, (4.2)
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where � = ω + εω∗ is called the instantaneous Pfaffian vector of the motion Km/Kf . The Pfaffian dual
vector � at the instant t of the one-parameter dual spherical motion Km/Kf is analogues to the Darboux
vector in the differential geometry of the space curves. In this case ω and ω∗ correspond to the instantaneous
rotational differential velocity vector and the instantaneous translational differential velocity vector of the
corresponding spatial motion Hm/Hf , respectively. The dual number � = ω + εω∗=‖�‖ is called the dual
angular speed of the dual spherical motion Km/Kf .

Let us define the following identification

� =
⎛

⎝
0 �3 −�2
−�3 0 �1
�2 −�1 0

⎞

⎠ ⇔
⎛

⎝
�1
�2
�3

⎞

⎠ = �. (4.3)

Consequently, we may form the vectors from L(OD3) in two ways as skew-symmeteric matrices or
as vectors of the usual three-dimensional dual vector space. In what follows we will use both of these
possibilities according to which of the two will be more advantageous in the given case. In analogy with
the real spherical motion, we can introduce the following theorem:

Theorem 4.2 For a one-parameter motion Km/Kf , analogous to the real spherical motion, the following
holds ([7]):

(i) The skew-symmetric 3×3 dual matrix (the dual vector function) determined by�m(t) = A′AtA is called
the moving polode.

(ii) The skew-symmetric 3 × 3 dual matrix (the dual vector function) determined by

�f = A′At, (4.4)

is called the fixed polode.
(iii) The moving and fixed polodes are related by

�f (t) = adA(t)�m(t), where adA�m = A�mAt, (4.5)

(iv)
∥
∥�f

∥
∥= ‖�m‖ ,

(v) The dual unit vectors

Rf (t) = �(t)
‖�(t)‖ and Rm(t) = �m(t)

‖�m(t)‖
are called the fixed axode and moving axodes of the motion Hm/Hf , respectively.

(vi)
dRf

dt
= adA

dRm

dt
⇔ dRf

dt
= A

dRm

dt
At.

A detailed exposition of this material can be found, for instance, in [7]. The following Lemma will be useful:

Lemma 4.1 Let A and B be arbitrary dual unit vectors, and C = A × B. The vectorial product-matrix of A
and B is given by

C = BAt − ABt. (4.6)

Proof This follows by noticing that, for any dual unit vector X,

C × X = (A × B)× X = B(AtX)− A(BtX), (4.7)

which leads to

CX = (BAt − ABt)X, (4.8)

in view of the identification in (4.3). Therefore, the Lemma is proved.
Let us use the superscript (m) or subscript m indicating that a dual unit vector or a dual invariant belongs

to Rm, and also the superscript (f ) or subscript f indicating that for Rf . Applying this to Study’s map we
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have that the dual unit vector Rf is a function of t; it represents the locus of the instantaneous screw
axis (ISA for short) ISA on Kf . This curve corresponds to a ruled surface in Hf and is called fixed axode.
This fixed axode is made up those lines in the fixed space Hf which at some instant coincide with a line
in the moving space having zero dual velocity. Likewise, the dual unit vector Rm is a function of t, which
represents the locus of the ISA on Km. This locus corresponds to a ruled surface in Hm and is called the
moving axode.

During the motion Km/Kf , the differentiable curve

t ∈ R→ Rm(t) ∈ Km, (4.9)

represents a differentiable family of straight lines or the moving axode. We now define an orthonormal
moving frame along this dual curve as follows:

Rm
1 = Rm(t), Rm

2 =
(

dRm

dt

) ∥
∥
∥
∥

dRm

dt

∥
∥
∥
∥

−1

, Rm
3 = Rm

1 × Rm
2 . (4.10)

This frame is called the Blaschke frame, and the corresponding lines intersect at the striction point of
the axode Rm

1 = Rm(t). Rm
3 and Rm

2 are known as the central tangent and the central normal of the ruled
surface Rm = Rm

1 (t), respectively. Let Km
r be a dual unit sphere generated by the set {O; Rm

1 , Rm
2 , Rm

3 }.
Therefore, the motion Km

r /Km is described by

dRm

dt
= BmRm, (4.11)

where

Bm =
⎛

⎝
0 Pm 0
−Pm 0 Qm

0 −Qm 0

⎞

⎠ and Rm =
⎛

⎝
Rm

1
Rm

2
Rm

3

⎞

⎠ , (4.12)

and the dual functions

Pm = pm + εp∗
m =

∥
∥
∥
∥

dRm

dt

∥
∥
∥
∥ , Qm = qm + εq∗

m = det(Rm
1 ,

dRm
1

dt ,
d2Rm

1
dt2

)

P2
m

, (4.13)

are called the Blaschke invariants of the moving axode. The integrals
∫

Pmdt, and
∫

Qmdt are the dual
arc-length of the dual curves Rm

1 (t) and Rm
3 (t), respectively. The striction (central) point, Cm(t), satisfies:

Cm×rm
i = r∗m

i , (i = 1, 2, 3). (4.14)

Differentiating the three Eqs. in 4.14 and using (4.12), we have:

dC(m)
dt

= q∗
mrm

1 + p∗
mrm

3 . (4.15)

If we use the arc length of the striction curve as the motion parameter, then the dual functions in (4.13)
obey

Pm = pm + ε sin σm, Qm = qm + ε cos σm , (4.16)

where σm is the striction angle measuring the deviation of the generating lines of Rm(t) from the striction
curve. The distribution parameter of the moving axode is

λm = p∗
m

pm
= sin σm

pm
. (4.17)

Now, we shall carry on as above. During the one-parameter dual spherical motion Km/Kf , the ISA on Kf
generates the fixed polode which admits the Blaschke frame

Rf
1= Rf (t), Rf

2 =
(

dRf (t)

dt

)∥
∥
∥
∥

dRf

dt

∥
∥
∥
∥

−1

, Rf
3 = Rf

1 × Rf
2. (4.18)
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Likewise the set {O; R(f )
1 , R(f )

2 , R(f )
3 } defines a dual unit sphere Kf

r , and the motion Kf
r/Kf is given by

dRf

dt
= Bf Rf , (4.19)

where

Bf =
⎛

⎝
0 Pf 0
−Pf 0 Qf
0 −Qf 0

⎞

⎠ and Rf =

⎛

⎜
⎜
⎝

Rf
1

Rf
2

Rf
3

⎞

⎟
⎟
⎠ . (4.20)

Similarly, the dual functions

Pf = pf + εp∗
f =

∥
∥
∥
∥

dRf

dt

∥
∥
∥
∥ , Qf = qf + εq∗

f = det(Rf
1,

dRf
1

dt ,
d2Rf

1
dt2

)

P2
f

, (4.21)

are the Blaschke invariants of the fixed axode. The integrals
∫

Pf dt, and
∫

Qf dt are the dual arc-length of

the dual curves Rf
1(t) and Rf

3(t), respectively. And the striction curve is given by

dCf

dt
= q∗

f rf
1 + p∗

f rf
3, (4.22)

Analogously, the dual functions in (4.21) are:

Pf = pm + ε sin σf , Qf = qf + ε cos σf , (4.23)

where σf is the striction angle of the lines of Rf (t)with the striction curve. Hence, the distribution parameter
of the fixed axode is

λf =
p∗

f

pf
= sin σf

pf
. (4.24)

Theorem 4.3 Under the above notation, for the Blaschke invariants of the axodes, we have

Pm = Pf , Qf − Qm = ‖�‖ . (4.25)

Proof This follows by noticing that, from (4.12), (4.20) and (vi) in Theorem (4.2), we have

dRm

dt
= PmRm

2 ,
dRf

dt
= Pf Rf

2. (4.26)

This implies

P2
f =

〈
dRf

dt
,

dRf

dt

〉

=
〈

adA(t)
dRm

dt
, adA(t)

dRm

dt

〉

=
〈

dRm

dt
,

dRm

dt

〉

= P2
m, (4.27)

since the scalar product is invariant under adA. Since Pm > 0, Pf > 0, we have Pm=Pf . From the equation

dRf

dt
= adA

(
dRm

dt

)

, (4.28)

we have

Pf Rf
2 = adA(PmRm

2 ) ⇒ Rf
2 = adA(Rm

2 ), (4.29)
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since adA is linear. Differentiation of the last equation gives

dRf
2

dt
= d

dt
(ARm

2 At) = dA
dt

Rm
2 At + ARm

2
dAt

dt
+ A

dRm
2

dt
At

= dA
dt

AtARm
2 At + ARm

2 AtA
dAt

dt
+ adA

(
dRm

2

dt

)

= �f Rf
2 − Rf

2�f + adA
(

dRm
2

dt

)

= �f Rf
3 + adA

(
dRm

2

dt

)

, (4.30)

where we have used the Eqs. 4.5 and 4.6. Thus, substituting now from (4.11), and (4.19) in the last relation,
we have

− Pf Rf
1 + Qf Rf

3 = �Rf
3 + adA(−PmRm

1 + QmRm
3 ) (4.31)

from which we get

− Pf Rf
1 + Qf Rf

3 = �Rf
3 − PmadA(Rm

1 )+ QmadA(Rm
3 ). (4.32)

which leads to

Qf Rf
3 = �f R3

f + QmRf
3. (4.33)

We have used

adARm
3 = Rf

3, adARm
1 = Rf

1. (4.34)

Hence

Qf Rf
3 = �f Rf

3 + QmRf
3. (4.35)

Therefore, we have

Qf − Qm = �. (4.36)

This completes the proof of the theorem. As a result, the following corollary can be given

Corollary 4.1 At any instant t, during the one-parameter spherical motion Km/Kf , the moving polode is
in contact with the fixed polode along the ISA in the first order at any instant t. The common distribution
parameter of the axodes is

λ := λm = λf = p∗

p
. (4.37)

Let Kr be a dual unit sphere generated by the right-handed dual system {O; R = R1, R2, R3} which is
defined as follows: R1(t) = r1(t) + εr∗

1(t) as the instantaneous screw axis ISA, R3(t) = r3(t) + εr∗
3(t) is the

common perpendicular of R1(t) and R1(t + dt), and R2(t) = r2(t)+ εr∗
2(t) = R1 × R2. This frame is called

relative frame and it is fully determined by the first-order properties of the dual spherical motion Km/Kf .
The dual unit vectors R1, R2, and R3 correspond to three concurrent mutually orthogonal lines in the
Euclidean 3-space E3. Their point of intersection is the striction point of the moving and fixed axodes. The
lines R2 and R3 are called the central normal and the central tangent of the axodes at the striction point,
respectively. Then, the derivative equations of the dual spherical motions Kr/Km and Kr/Kf , respectively,
are:

dR
dt

∣
∣
∣
∣m = C(M)R, R =

⎛

⎝
R1
R2
R3

⎞

⎠ , C(M) =
⎛

⎝
0 P 0
−P 0 Qm

0 −Qm 0

⎞

⎠ , (4.38)

and
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dR
dt

∣
∣
∣
∣
f

= C(F)R, C(F) =
⎛

⎝
0 P 0
−P 0 Qf
0 −Qf 0

⎞

⎠ , (4.39)

where

P = p + εp∗ and Qm = qm + εq∗
m, Qf = qf + εq∗

f , (4.40)

are the invariants of the motion Km/Kf .

5 The approach to a ruled surface associated with the axodes

In the above section, the dual invariants of the polodes are defined. Now, we will analyse their geometrical
and kinematic meanings. For this purpose, consider a dual point X such that its coordinates are:

3∑

i=1

X2
i = 1, X =XtR, X =

⎛

⎝
X1
X2
X3

⎞

⎠ . (5.1)

If X is a function of t, the velocity of X at the instant t with respect to the moving space Hm is

dX
dt

∣
∣
∣
∣
m

= dXt

dt
R + Xt dR

dt

∣
∣
∣
∣
m

. (5.2)

Similarly, we obtain the velocity of X with respect to the fixed space Hf as follows:

dX
dt

∣
∣
∣
∣
f

= dXt

dt
R + Xt dR

dt

∣
∣
∣
∣
f

, (5.3)

or from (4.38) and (4.39), we get

dX
dt

∣
∣
∣
∣
m

=
(

dXt

dt
+ XtC(M)

)

R, (5.4)

and

dX
dt

∣
∣
∣
∣
f

=
(

dXt

dt
+ XtC(F)

)

R. (5.5)

In particular, if the line X is fixed relative to the moving space Hm, then the derivative dX
dt

∣
∣
m = 0. This

complies with the fixed dual-point condition of a dual curve associated with a dual curve, that is:

dXt

dt
= XtC(M)t, (5.6)

where

C(M)t + C(M) = 0. (5.7)

Now, suppose that X is fixed relative to the moving space Hm and let us calculate its velocity with respect
to the fixed space Hf . Then we substitute (5.7) in (5.6) and obtain

dX
dt

= Xt(C(F)− C(M))R. (5.8)

Let us define a new matrix C(R) by

C(R) = C(F)− C(M). (5.9)
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Then (5.8) can be rewritten as:

dX
dt

= XtC(R)R. (5.10)

In view of (5.9), the matrix C(R) is skew-symmetric, i.e.,

C(R)t + C(R) = 0, (5.11)

and therefore possesses an axial dual vector D = d + εd∗ such that

C(R)X = D × X. (5.12)

Thus Eq. 5.10 can be written as follow:

dX
dt

= D × X, D = D(f ) − D(m) = �R1, (5.13)

where

‖�‖ = � = ω + εω∗. (5.14)

From Eq. 5.13, it follows that the acceleration of X is given by

d2X
dt2

= �
′
R1 × X+�R

′
1 × X +�2R1 × (R1 × X),

which implies that

d2X
dt2

= X3P�R1 − (X2�
2 + X3�

′
)R2 + (X2�

′ − X1P�−�2X3)R3. (5.15)

The real part ω and the dual part ω∗ correspond, respectively, to rotational and translational motions when
the moving axode rolls about and slides along a common ruling. Hence the following corollary can be given

Corollary 5.1 At any instant t, during the one-parameter spatial motion Hm/Hf for a non-vanishing distri-
bution parameter λ of the axodes, the pitch of the motion can be expressed as:

h = ω∗

ω
=

q∗
f − q∗

m

qf − qm
= λ

(
cot σf − cot σm

cot θf − cot θm

)

, (5.16)

where σf , σm are the striction angles and θf , θm are the apex angle of the director cone of revolution of the
axodes.

5.1 The inflection line congruence

According to Study’s map, four independent parameters define an oriented line, so it is possible to intersect
any of two line complexes, and obtain a finite number of lines with associated properties. The intersection
of three of the line complexes yields a ruled surface. Now it is useful to study the ruled surface generated
by the associated line X. For general purposes we define a dual frame moving along the dual curve X(t)
on Kf . This curve corresponds to a ruled surface in the fixed space Hf . The Blaschke frame along X(t) is
defined as follows:

E1 = X = X1R1 + X2R2 + X3R3, (5.17)
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E2 = X
′

∥
∥X′∥∥=−X3R2 + X2R3

√

1 − X2
1

, (5.18)

E3 = X
′

∥
∥X′∥∥ × E2= (1 − X2

1 )R1 − X1X2R2 − X1X3R3
√

1 − X2
1

. (5.19)

The dual unit vectors E1, E2, and E3 correspond to three concurrent mutually orthogonal lines in E3.
Their point of intersection is the striction point of the ruling X. By construction, the Blaschke formula is

d
dt

⎛

⎝
E1
E2
E3

⎞

⎠ =
⎛

⎝
0 Px 0
−Px 0 Qx

0 −Qx 0

⎞

⎠

⎛

⎝
E1
E2
E3

⎞

⎠ , (5.20)

where

Px = px + εp∗
x = �

√

1 − X2
1 , Qx = qx + εq∗

x = �X1 + PX3

1 − X2
1

, (5.21)

are the Blaschke invariants of the dual curve X(t).
The distribution parameter of the ruled surface generated by the associated line X can be given by

λx = x2x∗
2 + x3x∗

3 + h(x2
2 + x2

3)

(x2
2 + x2

3)
. (5.22)

Equation 5.22 can be used to identify those associated lines of the moving axode that trace ruled surfaces
having the same distribution parameter. This set of lines is called a line complex and is defined by the
equation

x2x∗
2 + x3x∗

3 + (h − λx)(x2
2 + x2

3) = 0, (5.23)

Equation 5.23 represents a quadratic line complex. As a result the following theorem can be given:

Theorem 5.1 During the one-parameter spatial motion Hm/Hf , consider a set of lines associated with the
moving axode and these lines are generators of ruled surfaces having the same distribution parameter in the
fixed space Hf . Then this set of lines belong to a quadratic line complex.

Now, let p(x, y, z) be the position vector of an arbitrary point on the associated line X, then

x∗ = p × x,

or

x∗
1 = x3y − x2z, x∗

2 = x1z − x3x, x∗
3 = x2x − x1y. (5.24)

Then Eq. 5.23 take the form

−x1x3y + x1x2z + (h − λx)(x2
2 + x2

3) = 0. (5.25)

This equation shows that the associated lines X of the moving axode that trace ruled surfaces with the same
distribution parameter lie on a plane parallel to the ISA of the one-parameter spatial motion Hm/Hf .

From Eq. 5.25, we have two different cases: In the case of λx = h the distribution parameter is associated
with the lines in planes passing through the ISA. In the case of λx = 0, the associated line X of the moving
axode, at instant t, generate a developable ruled surface, and Eq. 5.25 reduces to

− x1x3y + x1x2z + h(x2
2 + x2

3) = 0. (5.26)
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In this case the generating line X and its neighboring X(t + dt) meet at the edge of regression of the ruled
surface, i.e. the tangent lines of the edge of regression are those lines. Then we have the following theorem:

Theorem 5.2 During the one-parameter spatial motion Hm/Hf , if associated lines of the moving axode
generates developable ruled surfaces in Hf , these lines are included in a special quadratic line complex which
are identical to line complex of the tangent lines of edge points in Hf .

The invariants Px = px + εp∗
x, and Qx = qx + εq∗

x provide a kinematic interpretation of the Blaschke
frame. To carry out this, we define the dual vector

D =QxE1 + PxE3, (5.27)

known as Darboux’s vector. According to this vector, at any instant t, the dual angular velocity vector of the
Blaschke frame with respect to itself has a component Qx about E1 and Px about E3. ‖D‖ = √

Q2
x + P2

x =
ωx + εω∗

x is the angular speed of E1 about the Darboux vector;

ωx =
√

q2
x + p2

x, ω∗
x = pxp∗

x + qxq∗
x√

q2
x + p2

x

, (5.28)

are the rotational angular speed and translational angular speed of E1, respectively. The pitch of E1 along
the Darboux vector is

hx = ω∗
x

ωx
= pxp∗

x + qxq∗
x

q2
x + p2

x
. (5.29)

Now we define the dual unit vector

U = D
‖D‖ = QxE1 + PxE3

√
Q2

x + P2
x

, (5.30)

where U is the Disteli axis of motion of the line E1 in the Blaschke frame. From Eq. 5.30, the Disteli axis
is parallel to the tangent plane of the ruled surface X = X(t), and is orthogonal to the central normal E2.
Therefore the ISA of the one-parameter spherical motion Km/Kf and the Disteli axis lie on a single great
dual circle determined by the intersection of the E1E3-plane with the dual unit sphere Kf . Let� = δ+ εδ∗
be the dual angle between the Disteli axis and the associated line X; then we have

U = cos�E1 + sin�E3. (5.31)

Note that� = δ+ εδ∗ is the dual spherical radius of curvature. It follows from the differentiation of (5.31)
that:

U
′ = (− sin�E1 + cos�E3)�

′ + (Px cos�− Qx sin�)E2, (5.32)

which leads to

cot� = Qx

Px
. (5.33)

This equation gives the relationship between the dual spherical curvature � and the dual spherical radius
of curvature as

� = σ + εσ ∗ = cot�. (5.34)

From the definition of the dual spherical radius of curvature we see that, if δ = π/2 and δ∗ = 0, then
� = 0. In this case E1, E2, and U are mutually orthogonal lines that intersect at the striction point of the
ruled surface X = X(t). When U and E3 line up, the ruled surface X = X(t) is defined by a screw motion
of the line E1 about the line U to the second order; usually this screw motion is only defined to first order;
the distribution parameter is the pitch of this motion , i.e., λx = hx. This is the analog for a ruled surface
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of an inflection point on a curve; for this reason the set of lines defined by � = 0 is called inflection line
congruence. Hence, one can see that an explicit equation for inflection line congruence is obtained by the
equation:

� = 0. (5.35)

We substitute from Eq. 5.21 in (5.53) and obtain

�X1(X
2
2 + X2

3 )+ PX3 = 0, (5.36)

which is a dual spherical curve of third degree. If we calculate the real and dual parts of (5.36), we have

ωx1(x2
2 + x2

3)+ px3 = 0,
(ω∗x1 + x∗

1ω)(x
2
2 + x2

3)+ 2ωx1(x2x∗
2 + x3x∗

3)+ px∗
3 + p∗x3 = 0.

}

(5.37)

The real part of Eq. 5.37 identifies the spherical cone of the motion Hm/Hf . Associated with the direction of
a line on the spherical cone, there is a plane of lines defined by the dual part of Eq. 5.37. The inflection-line
congruence consists of a set of a plane of lines, each of which is associated with a direction of the spherical
cone of the motion Hm/Hf . Note that the Plucker coordinates xi, x∗

i (i = 1, 2, 3) satisfy the equations

x2
1 + x2

2 + x2
3 = 1, x1x∗

1 + x2x∗
2 + x3x∗

3 = 0. (5.38)

Each equation of (5.37) with the Eqs. 5.38 represent a cubic line complex whose common lines form the
inflection-line congruence. Hence, we summarize this result in the following theorem:

Theorem 5.3 In the one-parameter spatial motion Hm/Hf , consider a set of associated lines of the moving
axode, such that, at the instant t, each of these lines has an analog of an inflection point on a curve. Then this
set of lines form a line congruence which is the intersection of two cubic line complexes.

6 The line trajectories and Disteli formulae

The Eular–Savary equation in planar kinematics relates the position of a point to the position of its center
of curvature and is the basis for a graphical construction yielding one given the other. Disteli [27] succeeded
in presenting a set of formulas which generalizes the Eular–Savary equation to the spatial kinematics of
line trajectories. This section gives a new method for deriving a new Disteli formula of spatial kinematics
by means of a dual angle. This means that we seek an oriented line in the moving space Hm with a fixed
dual angle with respect to a given line in the fixed space Hf . Hence, for the instantaneous fixed line X of
the motion Hm/Hf , we introduce the dual angles � = θ + θ∗ , and � = ϕ + εϕ∗ (see Fig. 1) to identify the
direction of X. Since X is a dual unit vector, we can write out the components of X in the following form:

X = cos�R1 + sin�L; L = cos�R2 + sin�R3 . (6.1)

This choice of coordinates is such that � = ϕ + εϕ∗ is the dual angle between the central normal E2 of
X(t) and R2 measured about the ISA; this means that a screw motion through an angle ϕ about the ISA
and distance ϕ∗ along it caries R2 into the central normal E2 of X(t). The dual angle � = θ + θ∗ defines
the position of X relative to the ISA of the motion Hm/Hf .

A similar set of coordinates may be used to identify the Disteli axis, U, of the surface X(t) at t = t0. Since
the central normal E2 is also normal to the Disteli axis, it is identified by the same dual angle � about the
ISA of the motion Hm/Hf . Denoting its dual angle with the ISA by �c = θc + εθ∗

c , we have

U = cos�cR1 + sin�c cos�R2 + sin�c sin�R3. (6.2)

From Eqs. 6.1 and 6.2 we require

〈X, U〉 = cos(�c −�) (6.3)
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Fig. 1 The moved line X
and its Distelli axis U
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and such that U, and (�c −�) remain constant up to the second order at t = t0, i.e.,

d(�c −�)

dt

∣
∣
∣
∣
t=t0

= 0,
dU
dt

∣
∣
∣
∣
t=t0

= 0, (6.4)

and

d2(�c −�)

dt2

∣
∣
∣
∣
t=t0

= 0,
d2U
dt2

∣
∣
∣
∣
t=t0

= 0.

We have for the first order
〈

dX
dt

, U
〉

= 0, (6.5)

and for the second-order properties
〈

d2X
dt2

, X
〉

= 0. (6.6)

We substitute from Eqs. 5.15 and 6.2 in (6.6) and obtain:

(cot�c − cot�) sin� = �

P
. (6.7)

This is the dual spherical Eular–Savary equation. In analogy with (5.34), the Eular–Savary equation takes
the form

(cot�c − cot�) sin� = �r, (6.8)
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where

�r = �

P
= Qf

P
− Qm

P
. (6.9)

By separating the real and the dual parts of Eq. 6.8, respectively, we get:

(cot θc − cot θ) sin ϕ = σr, (6.10)

and

ϕ∗(cot θc − cot θ) cosϕ −
(

θ∗
c

sin2 θc
− θ∗

sin2 θ

)

sin ϕ = σ ∗
r . (6.11)

The spherical Eular–Savary equation (6.10) together with (6.11), are called the Disteli formulae of spatial
kinematics [28]. Equation 6.9 deals only with the direction of the line X, as well as its Disteli axis; Eq.
(6.10) is more complicated; by means of (6.11) it may be simplified to

σrϕ
∗ cot ϕ −

(
θ∗

c

sin2 θc
− θ∗

sin2 θ

)

sin ϕ = σ ∗
r . (6.12)

If (besides ϕ∗ and ϕ) θc and θ∗
c are known, then θ follows from (6.9), and θ∗ from (6.11). Conversely, if

we start with θ and θ∗, they determine θc and θ∗
c . Hence, during the one-parameter spatial motion Hm/Hf

there exists a bio-relationship between an instantaneous fixed line and the Disteli axis.

6.1 A characteristic property of the Disteli axis

Now we give a new characteristic property of the Disteli axis by means of dual angle approximations.
Therefore, if we define the dual angle 
 = ψ + εψ∗ = �c − �, where ψ is the angle between the line X
and its Disteli axis U and ψ∗ is the minimal distance (along their common perpendicular), then this gives
rise to

arccos(〈X, U〉) = 
. (6.13)

This relationship defines a metric for the points on the dual unit sphere. During the motion Km/Kf (Hm/Hf )

this dual angle naturally changes. For the first differential of 
 with respect to the dual arc length of dS we
have from (6.13)

d

dS

= 〈−X′, U〉
√

1 − (〈X, U〉)2 . (6.14)

Here dash denotes to differentiation w.r.t.s. So, in view of (3.6), we have

d

dS

= 0 ⇐⇒ 〈−X′, U〉 = 0((−KB)× 〈X, U〉 = 0) ⇐⇒ T⊥U ⇐⇒ U =A1N + A2B (6.15)

for some dual numbers A1, A2 ∈ D, since K �= 0.
Applying this to Study’s map, we obtain as a result the following:

Theorem 6.1 For the one-parameter motion Hm/Hf , the vanishing of the first differential of the angle and
the minimal distance of the directed line X and its Disteli axis U is characteristic for the line X and its Disteli
axis U to lie with the ISA in a hyperbolic line congruence. The common angle and the minimal distance of
such lines will be invariant in the first approximation.
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Differentiation of Eq. 6.14 leads similarly to

d2


dS2 = (〈−X′, U〉)′√1 − (〈X, U〉)2 − 〈−X′, U〉(√1 − (〈X, U〉)2)′
1 − (〈X, U〉)2 . (6.16)

So

d

dS

= d2


dS2 = 0 ⇐⇒ 〈−X′, U〉 =(〈−X′, U〉) =0,

⇐⇒

U =A1N + A2B and 〈(A1N + A2B),KN〉 =0,

for some dual numbers A1, A2 ∈ D, ⇐⇒

U =A2B,

for some A2 ∈ D, since K �= 0. And 〈U, U〉 = 1 ⇒ A2 = ±1. So

d

dS

= d2


dS2 = 0 ⇐⇒ U = ± B. (6.17)

So, applying this to Study’s map, we have the following theorem

Theorem 6.2 For the one-parameter motion Hm/Hf , the vanishing of the first and second differential of the
angle and the minimal distance of the directed line X and its Disteli axis U is characteristic for the correspon-
dence B → ±U for which B (binormal vector) is the Disteli axis of the trajectory’s ruled surface through X.
This correspondence between Hm and Hf leaves the angle and the minimal distance of corresponding lines
invariant in the second approximation.

Differentiation of (6.16) leads similarly to

d3


dS3 = 1
1 − (〈X, U〉)2 {(〈−X′, U〉)′′

√

1 − (〈X, U〉)2 − 〈−X′, U〉(
√

1 − (〈X, U〉)2)′′)}

+{〈−X′, U〉)′(
√

1 − (〈X, U〉)2 − 〈−X′, U〉[1 − (〈X, U〉)2]′}( 1
1 − (〈X, U〉)2 )

′.
(6.18)

Thus

d

dS

= d2


dS2 = d3


dS3 = 0 ⇐⇒ 〈−X′, U〉 =〈−X′′, U〉 = 〈X′′′, U〉 =0,

⇐⇒

U = ± B and 〈−U,(KN)′〉 = 0,

⇐⇒

U = ± B and 〈−U,K′N + K(−KT+TB)〉 = 0,

⇐⇒
U = ± B and ∓ KT = 0 ⇐⇒ U = ± B, and T = 0, (6.19)

since K �= 0. Referring to Study’s map, we summarize this result in the following theorem:
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Theorem 6.3 For the one-parameter motion Hm/Hf , the vanishing of the first, second and third differential
of the angle and the minimal distance of the directed line X and its Disteli axis U characterizes the lines of the
torsion line congruence (T = 0, is the dual torsion of X) for which U is the Disteli axis (ISA of the motion)
of the trajectory’s ruled surface through X. This correspondence between Hm and Hf leaves the angle and
the minimal distance of corresponding lines invariant in the third approximation.

Since T = 0, the Disteli axis is fixed to the second order and the generating line of the ruled surface
X = X(t) moves about it with constant pitch. Thus, locally the ruled surface X = X(t) is traced during a
helical motion by the line X located at a distance ψ∗ and angle ψ relative to its Disteli axis.

7 Some explanations and an example

First, in this section we demonstrate the use of dual vectors for describing the ISA of the one-parameter
dual spherical motion Km/Kf . The one-parameter spatial motion Hm/Hf can be described analytically by
the matrix equation

xf (t) = A(t)xm + m(t), (7.1)

where xm, xf , m are 3 × 1 real matrices and A ∈ SO(3). Here

SO(3) = {A ∈ O(3) : det A = 1}, O(3) = {A ∈ R
3
3 : At = A−1}, (7.2)

where A and m are C∞ functions of a real parameter t; xm and xf correspond to the position vector of the
same point X, with respect to the orthonormal frames of the moving space Hm and the fixed space Hf ,
respectively. At the initial time t = 0 we consider the case where the orthonormal frames of the moving
space Hm and the fixed space Hf are coincident.

The velocity of a fixed point xm ∈ Hm is

x
′
f = A

′
xm + m

′
, (7.3)

since xm is fixed. If we replace xm in view of (7.1), we get

x
′
f = A

′
Atxf + (m

′ − A
′
Atm). (7.4)

The matrix A
′
At is 3 × 3 skew-symmetric as differentiation of AAt = I, where I is the 3 × 3 unit matrix,

gives:

A
′
At + AA

′t = 0; 0 is the zero matrix. (7.5)

If we write ω = A
′
At, then (7.5) reduces to

ω + ωt = 0. (7.6)

Therefore Eq. 7.4 can be rewritten in the form

x′
f = ωxf + (m′ − ωm). (7.7)

As a direct consequence of this equation, there is a dual vector

�((t) = ω(t)+ εω∗(t), (7.8)

such that

ωxf = ω × xf ; ∨xf ∈ E3 and ω∗ = (m
′ − ωm). (7.9)



A new geometrical approach to one-parameter spatial motion 169

For comparison, let us take

A(ϕ) =
⎛

⎝
cos2 ϕ sin ϕ sin ϕ cosϕ
− sin ϕ cosϕ cosϕ − sin2 ϕ

− sin ϕ 0 cosϕ

⎞

⎠ , m(ϕ) =
⎛

⎝
0
µ cosϕ
µ sin ϕ

⎞

⎠ ; µ ∈ R. (7.10)

The application of (7.10) to (7.9) gives

ω =
⎛

⎝
sin ϕ
cosϕ
−1

⎞

⎠ , ω∗ =
⎛

⎝
−µ cosϕ(1 + sin ϕ)
µ sin ϕ(1 + sin ϕ)
µ cosϕ(1 − sin ϕ)

⎞

⎠ . (7.11)

Therefore the Pfaffian dual vector � at the instant ϕ of the one-parameter dual spherical motion Km/Kf is:

�(ϕ) = ω(ϕ)+ εω∗(ϕ), =
⎛

⎝
sin ϕ − εµ cosϕ(1 + sin ϕ)
cosϕ + εµ sin ϕ(sin ϕ − 1)
−1 + εµ cos ϕ(1 − sin ϕ)

⎞

⎠ . (7.12)

In view of Theorem (4.2), the fixed axode is given by

Rf (ϕ) = �

‖�‖ = 1
√

2[1 − εµ cos ϕ(1 + sin ϕ)]

⎛

⎝
sin ϕ − εµ cos ϕ(1 + sin ϕ)
cosϕ + εµ sin ϕ(sin ϕ − 1)
−1 + εµ cosϕ(1 − sin ϕ)

⎞

⎠ . (7.13)

This shows that the moving polode on Km is described by:

�m = dMt

dϕ
M; M = (A + εmA), (7.14)

where

M =
⎛

⎝
cos2 ϕ + ε sin ϕ cosϕ(sin ϕ − 1) sin ϕ(1 − εµ cosϕ) sin ϕ cosϕ + εµ(sin3 ϕ + cos3 ϕ)

sin ϕ cosϕ(−1 + εµ cos ϕ) cosϕ + εµ sin2 ϕ sin2 ϕ(−1 + εµ cos ϕ)
− sin ϕ − εµ cos3 ϕ −εµ sin ϕ cosϕ cosϕ(1 − εµ sin ϕ cosϕ)

⎞

⎠ . (7.15)

So that, the moving axode is given by

Rm(ϕ) = �m

‖�m‖ = 1
√

2[1 − εµ cosϕ(1 + sin ϕ)]

⎛

⎝
sin ϕ + εµ sin ϕ cosϕ(sin ϕ − 1)
1 − εµ sin ϕ cosϕ
− cosϕ + εµ(cos2 ϕ + sin3 ϕ)

⎞

⎠ . (7.16)

We now calculate the Blaschke invariants of the fixed axode R1 = Rf (ϕ). For the motion Km/Kf , from
Eq. 7.13, we can write:

�f (ϕ) = �R1(ϕ); � = √
2[1 − εµ cos ϕ(1 + sin ϕ)]. (7.17)

Upon differentiating both sides of (7.17), with respect to ϕ, we have:

d�f

dϕ
= �

′
f = �

′
R1 + P�R2, (7.18)

and

�
′′
f = (�

′′ − P�)R1 + (2P�
′ + P

′
�)R2 + PQf�R3, (7.19)

in view of (4.39). Further, let us form the vectorial product

�f (ϕ)× �
′
f (ϕ) = P�2R3. (7.20)
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Now
∥
∥
∥�f (ϕ)× �

′
f (ϕ)

∥
∥
∥

2 = 〈�f (ϕ), �f (ϕ), 〉〈�′
f (ϕ), �

′
f (ϕ)〉 − (〈�f (ϕ), �

′
f (ϕ)〉)2, (7.21)

or equivalently

〈�f (ϕ), �f (ϕ), 〉〈�′
f (ϕ), �

′
f (ϕ)〉 − (〈�f (ϕ), �

′
f (ϕ)〉)2 = P2�4. (7.22)

Finally, we have:

det(�f , �
′
f , �

′′
f ) = P2Qf�

3. (7.23)

On the other hand, from Eq. 7.12, we may obtain that:

�
′
f (ϕ) =

⎛

⎝
cosϕ − εµ[− sin ϕ(1 + sin ϕ)+ cos2 ϕ]
− sin ϕ + εµ[cosϕ(sin ϕ − 1)+ sin ϕ cosϕ]
−εµ[sin ϕ(1 − sin ϕ)] + cos2 ϕ]

⎞

⎠ , (7.24)

and

�
′′
f (ϕ) =

⎛

⎝
− sin ϕ − εµ[cosϕ(1 + sin ϕ)+ 3 cosϕ sin ϕ]
− cosϕ + εµ[− sin ϕ(sin ϕ − 1)+ 2 cos2 ϕ − sin2 ϕ]
−εµ[cosϕ(1 − sin ϕ)− 3 cosϕ sin ϕ]

⎞

⎠ . (7.25)

It follows from Eqs. 7.12 and 7.24 that :

〈�f (ϕ), �
′
f (ϕ)〉 = εµ(sin2 ϕ − cos2 ϕ + sin ϕ) (7.26)

So, the result is

(〈�f (ϕ), �
′
f (ϕ)〉)2 = 0. (7.27)

Further, we have

〈�′
f (ϕ), �

′
f (ϕ)〉 = 1 + 2εµ(−1 + 2 sin ϕ) cosϕ. (7.28)

On substituting the values of �, �
′
f (ϕ) and �

′′
f (ϕ) in (7.22), we find:

1 + 2εµ(−1 + 2 sin ϕ) cosϕ = �2P2
f . (7.29)

If we calculate the real and dual parts of Eq. 7.29, we have

p = 1√
2

, p∗ = µ

2
√

2
(−1 + 5 sin ϕ) cosϕ. (7.30)

We find therefore, by means of (4.37), that the common distribution parameter of the axodes is given by

λ = µcosϕ

2
(−1 + 5 sin ϕ). (7.31)

In view of (7.12), (7.24) and (7.25), we have

det(�f , �
′
f , �

′′
f ) = 1 − 3εµ cos ϕ(1 + sin ϕ). (7.32)

We have found, by substituting (7.32) in (7.23), that:

1 − 3εµ cos ϕ(1 + sin ϕ) = P2Qf�
3. (7.33)

If we calculate the real and dual parts of this equation, we get

qf = 1√
2

, q∗
f = −µ cosϕ(1 + 13 sin ϕ)

2
√

2
. (7.34)

By Eqs. 7.34 and 4.36 we have:

qm = − 1√
2

, q∗
m = µ cosϕ(1 − 11 sin ϕ)

2
√

2
. (7.35)

By using the real and dual parts of the integral invariants of the axodes, we can find the invariants of the
line trajectories associated with the axodes.
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8 Conclusion

The starting point of this work is to define the dual version of a curve associated with a curve in the Euclidean
3-dimensional space E3 given in [26]. We developed this approach in the dual 3-space D3 to a dual curve
associated to a dual curve to provide the requirement of instantaneous kinematics and geometry of spatial
motion because the movement of any fixed line in a moving body is associated with the generator of the
axode. The kinematics and geometry of ruled surfaces generated in a one-parameter spatial motion have
been treated in terms of the invariants of the axodes. According to the derived formulae of the geometry
and kinematics of the axodes, one can expect their usefulness in design and analysis of line trajectories
associated with the axodes. This study is intended to clarify the subject of second-order one-parameter
spatial-motion properties and leads to a general understanding. The results, in addition to their theoretical
interest, have applications in the analysis of spatial mechanisms, manipulators and in the prescription of
tool paths for manipulator end effectors.
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